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ABSTRACT 

COO s i n g l e  c r y s t a l s  having a <loo> a x i a l  o r i e n t a t i o n  were creep  t e s t e d  

-4 i n  compression a t  oxygen pressures  of p = 10 atm t o  1 atm. Tests were con- 

ducted over a temperature range of 1000 t o  1200 C (0.60 - 0.71 Tm) and a stress 

range of 850 t o  1700 p s i .  Sigmoidal (S-shaped) c reep  curves were observed. The 

0 
O2 

dependence of t h e  c reep  r a t e ,  C2, a t  t h e  i n f l e c t i o n  of t h e  c reep  curve on temper- 

a tu re ,  stress and oxygen pressure  was inves t iga t ed .  It was found t h a t  

0.48 ,6.8 exp-(Qc/RT), where Qc = 99.8 kcal/mol a t  po = 1 atm and 
% a Po2 2 
87.1 kcal/mol a t  po = l o m 2  atm. These a c t i v a t i o n  energ ies  f o r  c reep  suggest 

t h a t  t h e  creep r a t e ,  i2, i s  con t ro l l ed  by oxygen d i f f u s i o n .  
2 

The ope ra t ive  s l i p  systems were {110]<110>. The creep  subs t ruc tu re  w a s  

s tud ied  by decora t ion  o f  sub-boundaries by Co 0 p r e c i p i t a t e  p a r t i c l e s  and by 

transmission e l e c t r o n  microscopy. Regular a r r ays  of  sub-boundaries formed during 

3 4  

creep .  A s i g n i f i c a n t  f r a c t i o n  of t hese  appeared t o  be t i l t  boundaries. 

The c reep  d a t a  obtained here  were used t o  develop a q u a l i t a t i v e  p i c t u r e  

of how COO s c a l e s  may creep  during isothermal oxida t ion  of Co. 
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INTRODUCTION 

Creep is  an important f a c t o r  i n  determining t h e  a b i l i t y  of an oxide 

s c a l e  t o  remain mechanically sound during high temperature oxida t ion .  

s c a l e  forming a t  e levated temperatures i s  usua l ly  subjected t o  increasing mechan- 

ical  stresses a s  i t  thickens.  The capac i ty  of t h e  scale t o  deform p l a s t i c a l l y  t o  

r e l i e v e  these  mechanical stresses before  they cause t h e  oxide t o  crack o r  t o  l o s e  

The oxide 

adhesion t o  the  metal i s  an important f a c t o r  con t ro l l i ng  t h e  soundness of t he  

s c a l e .  

Grain s i z e ,  pu r i ty ,  environment, s toichiometry,  d i spers ions  of o the r  

phases, and poros i ty  a l l  have a s i g n i f i c a n t  inf luence on the  creep proper t ies  of 

p ro tec t ive  oxides .  However, t he  i n t e r p r e t a t i o n  of opera t ive  creep mechanisms and 

the  way i n  which the  above-mentioned parameters inf luence t h e  mechanisms i n  spe- 

c i f i c  oxides i s  s t i l l  specula t ive  and based on r a t h e r  tenuous experimental  

evidence. 

Oxide s c a l e s  a r e  q u i t e  nonuniform i n  micros t ruc ture  and at tempts  t o  

measure t h e  creep proper t ies  of oxide s c a l e s  are fragmentary and d i f f i c u l t  

t o  i n t e r p r e t .  A more reasonable approach is  t o  con t ro l  t h e  experimental va r i ab le s  

a s  c lose ly  as poss ib le  by studying pure, s i n g l e - c r y s t a l  and po lyc rys t a l l i ne  oxides 

f i r s t .  I n  t h i s  way t h e  defec t  concentrat ion,  g r a i n  s i z e ,  and poros i ty  are much 

more e a s i l y  cont ro l led  and t h e i r  r e l a t i v e  cont r ibu t ions  t o  t h e  creep behavior can 

be determined. 
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This study was undertaken t o  determine some of  t h e  pe r t inen t  f ac to r s  

con t ro l l i ng  creep of COO, including stoichiometry,  temperature and stress. This 

oxide forms during oxidat ion of Co-base a l l o y s  and i t s  p l a s t i c i t y  and adherence 

r a y  a f f e c t  t he  oxidat ion behavior.  

inf luence of g r a i n  boundaries, which can be very important i n  the  c reep  of oxides .  

Po lyc rys t a l l i ne  COO is  being s tudied a t  p resent ,  and t h e  r e s u l t s  w i l l  be d i s -  

cussed i n  a l a t e r  r e p o r t .  

S ingle  c r y s t a l s  were used t o  e l imina te  t h e  

EXPERIMENTAL PROCEDURE 

Creep Specimens 

Two cobal t  monoxide s i n g l e  c r y s t a l  boules, grown by t h e  flame fusion 

technique, were obtained from Marubeni-Iida (America), Inc .  

[loo] a x i a l  o rkenta t ion  and a t y p i c a l  manufacturers ana lys i s  ( i n  weight %) was: 

The boules had a 

Co, 79.70%; Fe, 0.085% max; Cu, t r a c e ;  Mn, 0.002% max; C1 ,  0.004% max; SO4, 

0.006% max; Pb and o the r  heavy metals,  0.0002% max. 

Each boule was or ien ted  by Laue back r e f l e c t i o n  and was then sect ioned 

p a r a l l e l  t o  t h e  (100) plane as shown i n  Figure 1 using a diamond cu to f f  wheel. 

Cyl indr ica l  creep specimens having a [ 1003 a x i a l  o r i e n t a t i o n  were u l t r a s o n i c a l l y  

trepanned from each sec t ion .  Af te r  machining, t he  specimens were cleaned i n  

methyl e thy l  ketone and the  end faces  of t h e  specimens were ground paral le l  on 

P600 S i c  paper.  

Creep Tes t ing  

Creep experiments were performed i n  compression under a cont ro l led  

atmosphere. Figure 2 shows a schematic of t he  apparatus design.  The furnace,  
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0 with  heat ing elements of Super Kanthal (MoSi ) was con t ro l l ed  t o  wi th in  f 2 C 

and the  temperature grad ien t  along t h e  specimen was l e s s  than 1 C .  The specimen 

2 
0 

was located i n  an alumina muffle tube which was sealed a t  both ends by water 

cooled '0' r i ng  s e a l s  and bellows arrangements. The gas providing the  con t ro l l ed  

atmosphere flowed continuously during the  creep tes t .  The flowing gases ,  con- 

s i s t i n g  of a i r ,  pure  oxygen, o r  argon-oxygen mixtures obtained comm'ercially, 

were d r i ed  by passing them through D r i e r i t e .  

The loading p la tens  i n  contac t  wi th  the  ends of t h e  compression spec i -  

mens were alumina, a s  were the  loading ram and pedes ta l .  Although no indenta t ion  

of  t h e  loading p la tens  by the  specimen was ever detected,  t h e  p la tens  were 

replaced a f t e r  every test .  

between the  specimen ends and t h e  alumina i n  order  t o  i n h i b i t  i n t e r a c t i o n  between 

t h e  COO and A1203.  

very l i t t l e  o r  no i n t e r a c t i o n  between t h e  COO specimen, platinum f o i l  and alumina 

p la tens .  

Sheets of 0,001 inch th i ck  platinum f o i l  were placed 

This f o i l  could be peeled o f f  a f t e r  t h e  c reep  t e s t s  i nd ica t ing  

Specimens were loaded d i r e c t l y  through t h e  top  loading ram and t h e  

stress was maintained constant  by adding the  appropr ia te  weights a t  0.2% creep 

s t r a i n  i n t e r v a l s .  The lower alumina pedestal  was f ixed  t o  t h e  c reep  frame, and 

t h e  upper alumina loading ram was joined t o  a water-cooled s t a i n l e s s  s t e e l  ram a t  

t h e  top  of t he  muffle.  

l i n e a r  bearings a s  shown i n  Figure 2 .  

The upper load t r a i n  was r i g i d l y  a l igned ,  by a set of  

Creep s t r a i n  was recorded continuously during t h e  creep test  using a 

l i n e a r  va r i ab le  d i f f e r e n t i a l  t ransducer  (LVDT) t o  d e t e c t  t h e  d i f f e renee  i n  t h e  

d e f l e c t i o n  between t h e  bottom of t h e  lower p la ten  and the  bottom of t h e  upper 

p l a t en  (Figure 2 ) .  This arrangement provided a s e n s i t i v i t y  of +, 60 p i n .  No 

creep of t h e  alumina push rods was observed a t  t h e  highest  temperaturg s tudied ,  

1200°c. 
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S t r u c t u r a l  S tudies  

Opt ica l  Metallography 

Only sur faces  p a r a l l e l  t o  a {loo] plane were examined. Creep specimens 

The specimens were were cleaved on [ loo]  planes p a r a l l e l  t o  t h e  compression a x i s .  

then mounted and mechanically ground and polished, f i n i sh ing  with Linde B and 

microcloth.  Most of t h e  s t r u c t u r a l  s tud ie s  were made on the  as-polished su r faces .  

Etch p i t t i n g  s tud ie s  were a l s o  made but t he  p r e c i p i t a t i o n  of a second phase, 

Co304, on cooling from t h e  creep temperature modified t h e  subs t ruc tu re  formed 

Transmiss ion  Electron Microscopy (TEM) 

Thin f o i l s  f o r  TEM were prepared from creep t 

during creep. Therefore t h i s  technique was not used ex tens ive ly .  

d specimen s t  by f i r s t  

c leaving s l abs  on [loo] planes p a r a l l e l  t o  t he  compression a x i s .  

ground t o  0.020 inch thickness  and were subsequently jet  indented chemically i n  

H2P04 maintained a t  70 t o  8OoC. The t h i n  a reas  a t  t h e  periphery of t h e  hole  i n  

t h e  indented s l a b  were then examined by TEN. 

prepara t ion  are given i n  re ference  ( 4 ) .  

The s l abs  were 

Addit ional  d e t a i l s  of t h i n  f o i l  

RESULTS 

Creep tests were conducted i n  compression on COO s i n g l e  c r y s t a l s  having 

a <loo> a x i a l  o r i e n t a t i o n  over a temperature range of 1000 t o  1200 C and a stress 

range of 850 t o  1700 p s i .  

con t ro l l ed  p a r t i a l  pressures  of oxygen ranging from 1 atm. t o  10 atm. These 

were obtained using oxygen, a i r ,  o r  commercial argon-oxygen mixtures.  

0 

The creep tests were performed i n  atmospheres having 

-4 
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The specimens were creep t e s t e d  t o  only about 8% s t r a i n  because b a r r e l -  

ing of  t h e  specimen became s i g n i f i c a n t  a t  higher  c reep  s t r a i n s  and made i t  

impossible t o  maintain cons tan t  stress during creep.  

an e l l i p t i c a l  shape during creep,  with one diameter showing no change i n  dimension 

and t h e  diameter perpendicular t o  it showing t h e  maximum increase  i n  dimension. 

Table 1 shows how t h e  t r ansve r se  dimensions and t h e  creep s t r a i n  var ied  along t h e  

The cross -sec t ions  assumed 

gage length of a t y p i c a l  specimen. An e l l i p t i c a l  c ross -sec t ion  was assumed i n  

ca l cu la t ing  the  c ross -sec t iona l  a rea  a f t e r  c reep .  

s t r a i n  i n  the  cen te r  of t h e  gage length was about 50% la rge r  than t h e  t o t a l  

Af te r  8% creep s t r a i n ,  t h e  

compressive s t r a i n ,  causing t h e  t r u e  stress i n  t h i s  region t o  decrease to  0.95 

of  t h e  i n i t i a l  stress. Hence i n  the  region of t he  gage length where most of 

t h e  creep was produced, t h e  stress decreased continuously during the  test ,  and 

a t  higher creep s t r a i n s ,  a s  bar re l ing  became more pronounced, t h i s  condi t ion 

became more unfavorable. A t  low creep s t r a i n s ,  where ba r re l ing  was not a s  pro- 

nounced, t h e  stress was assumed t o  be constant  during the  creep t es t .  

Creep Proper t ies  

The c reep  curves d id  not have t h e  c l a s s i c  shape, defined by a primary 

creep region of dece le ra t ing  creep followed by a steady s t a t e  region of cons tan t  

creep r a t e .  Instead,  t h e  c reep  curves were sigmoidal (S-shaped), a s  shown i n  

Figure 3 .  The COO s i n g l e  c r y s t a l s  exhib i ted  only s tages  1 and 2 of t h e  th ree -  

s t a g e  behavior t y p i c a l  of sigmoidal creep. Stage 1 cons is ted  of an i n f l e c t i o n  

i n  t h e  creep curve s h o r t l y  a f t e r  loading, followed by a region i n  which t h e  creep 

1, rate increased with increasing creep s t r a i n .  The i n f l e c t i o n ,  having a s lope,  6 

r e su l t ed  from t h e  c reep  r a t e  decreasing immediately a f t e r  loading before  it began 

t o  increase  with increas ing  creep s t r a i n .  Stage 2 is  a region of continuously 

decreasing creep r a t e  with increasing c reep  s t r a i n .  The c reep  r a t e  a t  t he  
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TABLE 1. TRANSVERSE DIMENSIONS AND STRAIN DISTRIBUTION 
ALONG SPECIMEN GAGE LENGTH AFTER CREEP 

Tota l  (b) Compressive 
1 S t r a i n ,  

Loca 1 
S t r a i n ,  

I AO I n i t i a l  Maximum Minimum 
Specimen Diameter, Pos i t i on  of Diameter Diameter - - 1; 
Number (a) inches Measurement (inches) (inches) \ *f j 

1c -2 0.168 End 1 0.170 0.166 0.024 

Middle 0.191 0 A69 0.135 

End 2 0.173 0.169 0.028 

11 

11 

.084 

(a) The creep condi t ions  were 

XC-2: 850 p s i ,  1157OC, po2 = 1.0 atm. 

(b) The minimum diameters a f t e r  creep were used t o  c a l c u l a t e  A. s i nce  t h e  
average of  t he  minimum diameters agreed wi th  t h e  average i n i t i a l  diameter.  

i n f l e c t i o n  i n  t h e  creep curve dividing regions 1 and 2 i s  designated d 

3 ,  corresponding t o  s teady s t a t e  creep, with a cons tan t  creep r a t e ,  was not 

observed up t o  0.085 creep s t r a i n .  Presumably it  would have been present  a t  

higher c reep  s t r a i n s  i f  t h e  e f f e c t s  of bar re l ing  had been removed and the  creep 

test  ~ o n t i n u e d ' ~ ) .  The q u a n t i t i e s  6 t and t '  i n  Figure 3 have o f t en  been 2, 2 2 

Stage 2 '  
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used i n  descr ibing sigmoidal c reep  curves,  and they a r e  included i n  the  summary 

of t he  creep resul ts  i n  Table 2 .  The terms c and t a r e  t h e  s t r a i n  and t i m e  of 

t h e  i n f l e c t i o n ,  r e spec t ive ly .  

2 2 

Sigmoidal c reep  curves have o f t en  been observed i n  non-metall ic s i n g l e  

c r y s t a l s  during creep, e .g . ,  Ge (6-11) , si (6, i2 , i3) ,  InSb ( I 4 ,  LiF(16,17) , doped Y 

AgBr"), NaC1 (18) , U02 (19) Y AI2O3 (20), and FeO (21). Although a r a t e  corresponding 

t o  d 

measuring device.  

has not been reported,  t h i s  may be a mat ter  of  t h e  s e n s i t i v i t y  of t he  s t r a i n  1 

I n  the  absence of a s teady s t a t e  c reep  rate, and because of t he  wide 

s c a t t e r  and low values of  6 

creep behavior of t h e  COO c r y s t a l s .  

as-received s i n g l e  c r y s t a l  boules of COO, and specimens from both of t hese  boules 

only the  c reep  r a t e  C was used t o  cha rac t e r i ze  the  1' 2 

The creep specimens were machined from two 

2 '  were used t o  determine t h e  temperature, stress, and po dependence of d 
2 

Considerable v a r i a t i o n s  i n  the  values of 6 were observed between t h e  2 

two boules employed, but da t a  from specimens taken from a given boule were s e l f -  

c o n s i s t a n t .  This d i f f e rence  i n  c reep  proper t ies  between t h e  boules p e r s i s t e d  over 

a range of temperature,  stress, and p . By assuming t h a t  t he  d i f f e rence  between 

boules was not  dependent on temperature, stress, o r  po , t h e  v a r i a t i o n s  i n  the  

p l o t s  of temperature, stress, and p dependence of 6 could be reduced consider-  

ably by mult iplying the  experimental values of d 

f a c t o r  of 3. The s o l i d  da t a  poin ts  i n  Figures 4-6 a r e  from one boule and have 

O2 

2 

2 O2 
from one of t h e  boules by a 2 

been mul t ip l ied  by t h i s  f a c t o r .  This treatment was necessary i n  order  t o  allow 

a meaningful ana lys i s  of r e s u l t s .  

An o p t i c a l  emission ana lys i s  was performed on each boule t o  determine 

whether t he  d i f f e rence  i n  c reep  proper t ies  between the  boules was due t o  impuri- 

t ies .  The l eve l s  of impur i t ies  i n  each boule were i d e n t i c a l  wi th in  the  accuracy 
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of t h e  technique. The r e s u l t s  of  t he  ana lys i s  i n  weight percent were S i ,  0.001- 

0.002; Mn, 0.02; Fe, 0.05; Mg, 0.01; Al, 0.008; Cu, t r a c e ;  N i ,  0.1, C a ,  0.003; 

o the r  elements were sought but not found. Therefore any impurity e f f e c t  must be 

a t t r i b u t e d  t o  a d i f f e rence  i n  concentrat ion of impur i t ies  below the  level of t he  

s e n s i t i v i t y  of t h i s  method of ana lys i s .  A d i f f e rence  i n  t h e  grown-in d i s loca t ion  

subs t ruc ture  could a l s o  have been responsible  f o r  t h e  d i f f e rence  i n  c reep  

s t r eng th  of t he  two boules, but such a v a r i a t i o n  could not be observed. 

The temperature dependence of d was measured a t  a constant  stress of  2 
-2 = 1 a t m  and 10 atm, and ' Po2 850 p s i  and under two p a r t i a l  pressures of oxygen 

t h e  r e s u l t s  a r e  shown i n  Figure 4 .  The s lopes of t he  l e a s t  mean squares l i n e s  

-2 
give  apparent a c t i v a t i o n  energies  of Q = 87.1 2 2 .3  kcal/mol a t  po =; 10 atm. 

2 C * 
and Q, = 99.8 f 7 . 7  kcal/mol a t  po = 1 atm. 

2 
The stress dependence of d is  shown i n  Figure 5 f o r  p = 1 atm and a 

2 09 
L 

0 test temperature of  1000 C .  The r e s u l t s  can b e  rep,resented by a power law, 

6 a On, where the  l e a s t  squares f i t  t o  t h e  poin ts  gives  n = 6.8 k 0.8. This 

l a r g e r  than values  reported fo r  s i n g l e  c r y s t a l s  of o the r  i on ic  compounds with 

t h e  NaC1 c r y s t a l  s t r u c t u r e ,  e .g . ,  n = 4.15 i n  FelmxO (21) and n = 5.6 f o r  NaCl 

2 
is 

using the  r ep lo t t ed  da ta  of I l s chne r  and Reppich(18). These i n  tu rn  d i f f e r  from 

t h e  r e s u l t s  f o r  s i n g l e  c r y s t a l s  of covalent ly  bonded ma te r i a l s  wi th  t h e  diamond 

(15) and n = 3.0 in S i  s t r u c t u r e  where n = 3.3 i n  G e  , n = 3.3 i n  InSb (12) (22) 

However, t h e  higher  stress exponent f o r  COO is  i n  accord with t h e  tendency f o r  

i on ic  c r y s t a l s  t o  have l a r g e r  exponents than the  covalen t ly  bonded c r y s t a l s .  I n  

* 
A s  noted above t h e  s o l i d  da t a  points  (Figures 4-6) a r e  from one boule and were 
obtained by mult iplying 8, values  i n  Table 2 by a f a c t o r  of t h r e e .  
a c t u a l  uncorrected da ta  a r e  used t h e  creep parameters determined from a l e a s t  

= 7 7 . 1  * 12  kcal/mol a t  mean squares ana lys i s  g ive  the  following r e s u l t s :  

2 

I f  t h e  

QC = 1 a t m ;  Qc = 60.0 5 6.5 kcal/mol a t  po = 0.01 atm; d a O 7 . 3  * 0.2; 
0.41-3. 0.08 for 2 0.53 rt 0.12 for 10-3 atm < ,< 1 atm; d2  OC po2 ' Po2 

10-4 a t m 6  po 6 1 atm. 
2 
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po lyc rys t a l l i ne  Co 0 sca l e s  t e s t e d  i n  bending, S t r a f fo rd  and Gar ts ide  (3 ) 1 -x 
observed t h a t  t h e  s t eady- s t a t e  creep r a t e  was proport ional  t o  *2-3. The lower 

exponent here  was probably due t o  g ra in  boundary e f f e c t s .  

The po dependence of d2 is  shown i n  Figure 6 a s  a power law r e l a t i o n ,  
2 0*48 ' Oool. From the  phase diagram of Co 0 given by Fisher  and 1 -x 

(23) t h e  composition dependence of d Tannhauser 

shows t h a t  according t o  a power law r e l a t i o n ,  E 2  a x  

can be determined. Figure 7 2 

I n  accord with t h i s  

%' study, S t r a f  ford and G a r t ~ i d e ' ~ )  observed t h a t  t h e  s t eady- s t a t e  creep r a t e ,  

of po lyc rys t a l l i ne  COO sca l e s  increased with increasing p . However t h e  creep 
0, 

r a t e  was not  

I n  c o n t r a s t ,  

s teady s t a t e  

of t h e  c reep  

0.5 L 

very s e n s i t i v e  t o  oxygen pressure,  being d a o r  c a x  . 
s Po, S z 

d a x fo r  po lyc rys t a l l i ne  Fe 0(21) and s imi l a r ly  4 a x  f o r  2 1 'X S 

(24) .  The exact dependence 2+x bending creep of po lyc rys t a l l i ne  UO 

r a t e  on composition w i l l  depend on t h e  mechanism of c reep .  For 

example, i f  a d i f fus ion  con t ro l l ed  mechanism is operat ive,  t he  composition depen- 

dence can be r e l a t e d  t o  t h e  concentrat ion of the  slowest moving point  de fec t ,  and 

t h e  oxygen p a r t i a l  p ressure .  Depending on t h i s  func t iona l  r e l a t i o n ,  it i s  poss ib le  

t o  observe d i f f e r e n t  dependencies of t h e  c reep  rate on po and x. 
2 

The point  a t  po = atm i n  Figure 6 (and x m 8 x i n  Figure 7) 

This 
2 

i s  s i g n i f i c a n t l y  above t h e  l i n e s  represent ing d 

could be a r e a l  e f f e c t  wherein t h e  creep r a t e  became independent of t h e  oxygen 

pressure a t  low p . However, t he re  was a l s o  a p o s s i b i l i t y  t h a t  t h e  specimen a t  

a o*48 and C2 a x 2 Po2 

O2 -4 = 10 a t m  was not a t  t h e  equi l ibr ium composition before  and during c reep  
p02 
t e s t i n g .  To inves t iga t e  t h i s  p o s s i b i l i t y ,  two specimens, approximately t h e  same 

s i z e  a s  t he  c reep  specimens, were annealed a t  1100 C f o r  66 hours ( t h e  t i m e  used 

t o  e q u i l i b r a t e  a l l  creep specimens) i n  p = 1 a t m  and po = 10 atm. They 

were water quenched, and then metal lographical ly  polished on t ransverse  cleaved 

0 

-4 

O2 2 
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sec t ions .  Figures 8 and 9 show the  s t r u c t u r e s  observed. Figure 8 revea ls  t h a t  

02, the  Co 0 p a r t i c l e s  a r e  small and uniformly d i s -  a f t e r  annealing i n  1 atm 

t r i b u t e d  over t h e  e n t i r e  c ross -sec t ion .  However, a f t e r  annealing a t  p = 10 

a t m  t h e  s t r u c t u r e  was not uniform over the  e n t i r e  c ross -sec t ion  (see Figure 9 ) .  

I n  the  as-polished condi t ion  no p r e c i p i t a t e s  o r  s t r u c t u r e  were observed, but 

a f t e r  e tching a gradient  i n  t h e  micros t ruc ture  appeared, cons i s t ing  of c l u s t e r s  

of p i t s  i n  t h e  cen te r  of t h e  specimen (Figure 9a) and a clear area  a t  t he  ou t s ide  

sur face  (Figure 9b) .  

-4 
3 4  * 

O2 

Because t h e  microstructure  was not homogeneous a f t e r  t h e  

quench, i t  i s  

t h e  pre-creep 

probable t h a t  t h e  equi l ibr ium composition was not  a t t a i n e d  during 

66-hour anneal a t  p = 10 atm. The reason f o r  t h i s  i s  c l e a r  -4 
0, 

L 

from t h e  phase diagram of Fisher  and T a n n h a ~ s e r ' ~ ~ ) .  For C O ~ - ~ O  a t  l lOO°C and 

-4 = 10 atm. A s  the  s to ich iometr ic  composition 

approach t o  equi l ibr ium composition much slower a t  

because t h e  composition became m o r e  s to ich iometr ic  

N -4 N 

= 1 atm, x = 0.008, whereas a t  po = 10 atrn, x = 0.0008. Thus, t he re  a r e  
2 

t e n  t i m e s  a s  many cobal t  vacancies ava i l ab le  fo r  d i f f u s i o n  a t  p = 1 a t m  than a t  
0, 

L 

i s  approached, t h i s  makes t h e  

lower po . Furthermore, 

a s  po decreased, less Co304 
2 

2 
p rec ip i t a t ed  during cool ing as shown i n  Figures 8 and 9 .  The a c t u a l  composition 

of t h e  specimen a t  po 

equi l ibr ium wi th  a higher  p . Therefore i n  Figures 6 and 7 t h e  da ta  points  

corresponding respec t ive ly  t o  po = lom4 atm and x = 8 x 

t o  t h e  r i g h t .  

-4 = 10 atm was probably equivalent  t o  a composition i n  
2 

O2 
would be s h i f t e d  

2 

Deformation Mode 

The opera t ive  s l i p  d i r e c t i o n  i n  c r y s t a l s  having the  sodium ch lo r ide  

c r y s t a l  s t r u c t u r e  is  predominantly <110>, although <loo> has been reported i n  

* 
These p r e c i p i t a t e s  were robably formed during the  quench, s ince  according t o  
t h e  Co/O phase diagram(2f), t h e  ma te r i a l  should be s i n g l e  phase above about 
990°c > 
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PbS(25) and PbTe (26'27).  

{111] s l i p  planes have been reported under c e r t a i n  condi t ions  

The primary s l i p  planes a r e  { l l O ] ,  and {loo] while  

(28) . 
The s l i p  systems operat ing during c reep  i n  COO could not be i d e n t i f i e d  

However one specimen d id  d i r e c t l y  s ince  no s l i p  l i n e s  were v i s i b l e  a f t e r  creep. 

not deform symmetrically but sheared by a r e l a t i v e  sideways displacement of i t s  

end faces .  The s l i p  l i n e s  were r e a d i l y  v i s i b l e  i n  t h i s  specimen a s  shown i n  

Figure 10. I n  Figure 10a the  s l i p  l i n e s  a r e  s t r a i g h t  and the re  a r e  l a rge  o f f s e t s  

on t h e  r i g h t  and l e f t  s ides  of t h e  specimen, i nd ica t ing  t h a t  screw d i s loca t ions  

e x i t  through the  (100) plane and t h e  s l i p  d i r e c t i o n  is  p a r a l l e l  t o  t h i s  sur face .  

I n  Figure 10b t h e  s l i p  l i n e s  a r e  wavy and t h e r e  a r e  no d i s t ingu i shab le  o f f s e t s  

on t h e  r i g h t  and l e f t  s ides  of t h e  specimen, i nd ica t ing  t h a t  edge d i s loca t ions  

e x i t  from the  (010) plane.  Since the  specimen a x i s  i s  a<OOD d i r e c t i o n ,  and the  

photographs a r e  p a r a l l e l  t o  [loo] planes,  t h e  s l i p  system i n  Figure 10 i s  a 

<I IO>{ 1103 system. 

The specimen o r i e n t a t i o n  was indexed r e l a t i v e  t o  the  specimen shape 

a f t e r  creep.  

e l l i p t i c a l  c ross -sec t ion  w a s  p a r a l l e l  t o  [loo], and the  major a x i s  of  t he  c ros s -  

s ec t ion  was p a r a l l e l  t o  [OlO]. The i d e n t i f i c a t i o n  of  t h e  planes p a r a l l e l  t o  t h e  

photographs i n  Figure 10 are cons i s t en t  with t h i s .  

Figure 10 i s  t h e  [Oll](Oil) system. 

operat ion of t h i s  system and t h e  symmetric s l i p  system, [Oil](Oll), which would 

produce s l i p  l i n e s  of t h e  same form perpendicular t o  those  i n  Figure 10, t h e  

observed shape change and ba r re l ing  i n  t h e  specimens which deformed "normally" 

becomes c l e a r .  

The compression a x i s  was p a r a l l e l  t o  [OOl] ,  t h e  minor a x i s  of t h e  

Thus t h e  s l i p  system i n  

I f  one now v i s u a l i z e s  t h e  simultaneous 
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Creep Subs t ruc ture  

The d i s loca t ion  subs t ruc ture  developed during creep could not be 

observed i n  d e t a i l  because of t h e  l o c a l  deformation introduced around p a r t i c l e s  

of Co 0 which p rec ip i t a t ed  during cool ing (below-900 C) from t h e  c reep  tempera- 

t u r e .  Subsequent examination by e t c h  p i t t i n g  and t ransmission e l ec t ron  micro- 

scopy, a s  shown i n  Figure 11, v e r i f i e d  t h a t  l a rge  numbers of d i s loca t ions  were 

0 

3 4  

introduced by these  p a r t i c l e s ,  p a r t i c u l a r l y  around t h e  l a rge r  p a r t i c l e s  ( 4 )  . 
Therefore t h e  c reep  subs t ruc ture  was s tudied  on mechanically polished [ 1003 s u r -  

faces  by r e ly ing  on decorat ion of sub-boundaries o r  groups of d i s loca t ions  by 

t h e  Co 0 p r e c i p i t a t e s .  This was not completely s a t i s f a c t o r y ,  but it d id  r evea l  

some d e t a i l s  of t h e  c reep  subs t ruc ture .  

a decorated sub-boundary . 

3 4  

The as-received c r y s t a l s  r a r e l y  showed 

A specimen creep t e s t e d  a t  a high stress, 1700 p s i ,  formed sub- 

boundaries during creep a s  shown i n  Figure 1 2 .  The two plane t r a c e  ana lys i s  of 

Figure 12 ind ica t e s  t h a t  t h e  rows of p a r t i c l e s  represent  planes p a r a l l e l  t o  ( O i l ) .  

The sub-boundary plane assoc ia ted  with the  f a i n t  rows of p a r t i c l e s  p a r a l l e l  t o  

t h e  specimen a x i s  on the  (010) sur face  i n  Figure 12  cannot be i d e n t i f i e d  unequi- 

vocal ly  s ince  no p a r t i c u l a r  set of p r e c i p i t a t e  rows can be assoc ia ted  with them 

on t h e  (100) su r face .  However, they a r e  cons i s t en t  wi th  (100) t w i s t  boundaries 

composed of screw d i s loca t ions  from t h e  two opera t ive  s l i p  systems, ( O l l ) [ O i l ]  

and (O'ii)[Oll]. These would be p a r a l l e l  t o  t he  (100) view. 

A regular  a r r ay  of sub-boundaries predominantly p a r a l l e l  t o  t h e  traces 

of t w o  perpendicular [ l l O ]  planes i s  shown i n  Figure 13. 

t e s t e d  a t  a lower stress, 930 p s i .  This [loo] su r face  i s  i n  t h e  plane of t h e  

diameter having the  l a r g e s t  dimensional increase  during creep.  Therefore t h e  

{ l l O ]  t r a c e s  shown i n  Figure 13 are p a r a l l e l  t o  t he  t r a c e s  of t h e  a c t i v e  (110] 

s l i p  planes,  ( O i l )  and (011). 

This specimen was creep 



It was presumed t h a t  a s t ra ight forward  r e l a t i o n  between t h e  subs t ruc ture  

and s l i p  could be obtained from an examination of t h e  subs t ruc ture  wi th in  t h e  

specimen shown i n  Figure 10. However, no d i s c e r n i b l e  subs t ruc tu ra l  pa t t e rn  was 

revealed by t h e  p r e c i p i t a t e s  a s  shown on longi tudina l  s ec t ions  i n  Figure 14. 

From t h e  genera l  appearance of t h e  decorated sub-boundaries a f t e r  creep, 
- 

most of t he  regular  boundaries formed during creep are e i t h e r  p a r a l l e l  t o  (021) 

o r  (011) planes.  

with increasing stress a s  seen i n  Figures 1 2  and 13. However, t h e  condi t ions 

under which the  boundaries formed a r e  not  c l e a r .  Of a series of specimens c reep  

Also, t he  spacing between t h e  decorated boundaries decreased 

t e s t e d  a t  po 
2 

t h e  spec imens 

Their absence 

ex ten t  on the  

0 = 1 atm, 1000 C and d i f f e r e n t  stresses from 850 t o  1700 p s i ,  only 

t e s t e d  a t  850 and 1700 p s i  contained decorated sub-boundaries. 

a f t e r  creep a t  1075 and 1330 p s i  may be dependent t o  a g r e a t e r  

decorat ion process than on the  presence of sub-boundaries. I f  

condi t ions during cool ing from the  creep temperature i n  some cases  favored more 

homogeneous nucleat ion of t he  p r e c i p i t a t e ,  the  sub-boundary pa t t e rn  would not be 

v i s i b l e .  Etch p i t t i n g  did appear t o  br ing  out  some sub-boundaries but t he  r e g u l t s  

were not d e f i n i t i v e .  

Transmission e l ec t ron  microscopy was performed on f o i l s  thinned from 

s l abs  cleaved p a r a l l e l  t o  (100) o r  (010) planes a f t e r  c reep .  

p a r t i c l e s  were observed both wi th in  the  subgrains and wi th in  the  sub-boundaries 

themselves. 

Numerous Cog04 

Indiv idua l  d i s loca t ion  loops were v i s i b l e  around small p a r t i c l e s ,  

but t h e  l a rge  p a r t i c l e s  had a general  accumulation of d i s l o c a t i o n  debr i s  

surrounding them. An example of a p a r t i c l e  of intermediate  s i z e  i s  shown i n  

Figure l l b .  

of t he  COO c r y s t a l  l a t t i c e .  

It is  cubic  i n  shape, wi th  i t s  faces  p a r a l l e l  t o  t h e  [loo] planes 

Two types of sub-boundaries observed i n  creep t e s t e d  COO s i n g l e  

c r y s t a l s  a r e  shown i n  Figure 15. A sub-boundary i n  an a rea  away from l a rge  

par t ic - les  i s  seen i n  Figure 15a. This f o i l  plane was p a r a l l e l  t o  t h e  (010) 
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plane i n  the  specimen shown i n  Figure 1 2 .  The boundary t r a c e  i s  p a r a l l e l  t o  

t h e  [loo] d i r e c t i o n  i n  Figure 15a j u s t  as t h e  rows of p r e c i p i t a t e  a r e  on the  

(010) view i n  Figure 1 2 .  

The complication introduced by t h e  par t ic le- induced d i s loca t ions  made 

t h e  Burgers vec tor  determination of t h e  sub-boundaries d i f f i c u l t .  

l i n e  d i r e c t i o n  of many of t he  d i s loca t ions  i n  t h e  boundary i n  Figure 15a i s  

p a r a l l e l  t o  [loo], corresponding t o  edge d i s loca t ions  of = f a /2  [Oil] or  

- b = f a/2 [Oll], which a r e  t h e  observed s l i p  d i r e c t i o n s .  

The genera l  
/ 

This would con t r ibu te  
s 

tilt charac te r  t o  t h e  boundary. 

It has t h e  appearance of a t w i s t  boundary, but t h e  r e l a t i v e  t i l t - t w i s t  charac te r  

Figure 15b shows a q u i t e  r egu la r  sub-boundary. 
I 

0 
could not be measured except f o r  a component of  misor ien ta t ion  of 0.4 

[loo], which could be contr ibuted by b's of f. a /2  [ O i l ]  and a/2 [Oil], among 

around 

o the r s .  

Hence boundaries having the  appearance of predominantly tilt and t w i s t  

charac te r  have been observed by TEM i n  COO s i n g l e  c r y s t a l s  a f t e r  creep.  Although 

d e f i n i t e  i d e n t i f i c a t i o n  of t h e  d i s loca t ions  composing t h e  boundaries could not be 

made, t h e i r  appearance i s  cons i s t en t  with the  presence of  s l i p  d i s loca t ions  having 

a = a /2  [Oil] and ]r = a/2 [ O l l ] .  

DISCUSSION 

An important point  which must be emphasized i n  t h i s  d i scuss ion  i s  the  

mult iplying f a c t o r  which was appl ied t o  the  creep r a t e s ,  d2 ,  from one of t h e  

boules.  It is f e l t  t h a t  t h i s  i s  j u s t i f i e d  s ince  it i s  not unusual t o  have d i f f e r -  

en t  l eve l s  of creep s t r eng th  from two d i f f e r e n t  c r y s t a l s  of a given binary com- 

pound. 

amounts of c e r t a i n  impur i t i e s .  

The creep p rope r t i e s  can be s e n s i t i v e  t o  the  presence of very small 

Also t h e  grown-in d i s loca t ion  subs t ruc ture  may 
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be  d i f f e r e n t  i n  ind iv idua l ly  grown s i n g l e  c r y s t a l s .  The attempt t o  account f o r  

most of t h e  v a r i a t i o n  by normalizing a very poss ib le  r e a l  d i f f e rence  i n  t h e  

r e l a t i v e  creep s t r eng ths  of t he  two boules i s  a l o g i c a l  approach. However the  

conclusions drawn must be viewed with t h i s  l i m i t a t i o n  i n  mind. 

The a c t i v a t i o n  energy f o r  high temperature creep of binary compounds 

i s  usua l ly  d i f f u s i o n  con t ro l l ed .  Although t h i s  u sua l ly  r e f e r s  t o  t h e  s teady 

2 '  state  creep  r a t e  i n  reg ion  3 of Figure 3 ,  i t  a l s o  appears t o  apply t o  E 

Diffusion r a t e s  fo r  cobal t  i n  COO have been measured by Carter and Richardson , 
while  oxygen d i f f u s i v i t i e s  have been determined by Thompson(30), and more r eceq t ly  

by Holt (31) and by Chen and Jackson(32). 

Richardson (29) found the  cobal t  d i f fus ion  a c t i v a t i o n  energy t o  be 34.5 kcal/mol. 

D i f f u s i v i t i e s  increased as po O S 3  a t  1 1 5 O O C  i n  the  region The 

d i f fus ion  c o e f f i c i e n t  fo r  coba l t  a t  115OOC and 0.5 atm was 5 x 10 

These r e s u l t s  may be compared with those  of Chen and Jackson (32) who found an 

a c t i v a t i o n  energy fo r  oxygen d i f f u s i o n  of 95 kcal/mol a t  0.21 atm oxygen wi th  a 

d i f f u s i v i t y  of  2 x The p a r t i a l  p ressure  dependence of 

t h e  oxygen d i f fus ion  rate i n  COO has not been determined. 

an a c t i v a t i o n  energy for  oxygen d i f fus ion  of 36 kcal/mol a t  0.13 atm oxygen and 

d i f fus ion  r a t e s  which g ive  an ex t rapola ted  value of 10-l' c m  /sec a t  115OOC. 

However, it i s  believed t h a t  t h e  more recent  s t u d i e s  by HDlt(31), who used t h e  

proton a c t i v a t i o n  technique, and by Chen and Jackson(32), who used t h e  i so top ic  

exchange method, a r e  more r ep resen ta t ive  of bulk d i f f u s i o n  of oxygen in  COO. 

(29) 

A t  0.2 atm oxygen pressure  Car t e r  and 

t o  1 atm po . 
cm/sec. 

2 -9 2 

2 c m  / sec  a t  1175OC. 

Thompson (30) reported 

2 

The r e s u l t s  of t hese  two inves t iga to r s  are i n  exce l l en t  agreement. 

Diffusion con t ro l l ed  high temperature creep of binary compounds is 

usua l ly  considered t o  be l imi ted  by t h e  migration of t h e  slower d i f fus ing  com- 

pound cons t i t uen t .  Using t h e  more recent  oxygen d i f f u s i o n  da ta  i t  i s  seen t h a t  

oxygen d i f fus ion  rates are some t h r e e  t o  four orders  of magnitude lower than 
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t h e  coba l t  d i f f u s i v i t i e s  a t  1150°C and 0 .2  atm oxygen pressure .  

values  f o r  Q a t  10 

bracket t h e  oxygen d i f f u s i o n  a c t i v a t i o n  energy of 95 kcal/mol determined a t  

2 x 10" atm and a r e  much g r e a t e r  than t h e  cobal t  d i f fus ion  a c t i v a t i o n  energy of 

34.6  kcal/mol. 

s i n g l e  c r y s t a l s  under these  condi t ions i s  con t ro l l ed  by oxygen d i f f u s i o n .  

Also, t h e  

-2 atm and 1 atm oxygen, 87.1 and 99.8 kcallmol, respec t ive ly ,  
C 

It can thus be concluded t h a t  high temperature creep of COO 

I f  high-temperature creep of COO is con t ro l l ed  by oxygen d i f fus ion ,  it 

remains t o  consider  t he  mechanism for  oxygen migrat ion.  

c i a t e d  point  de fec t s  predominate a t  t h e  temperatures employed i n  t h i s  s tudy t h e  

two p o s s i b i l i t i e s  a re :  (1) d i f f u s i o n  v i a  vacancies i n  t h e  oxygen s u b l a t t i c e  o r  

o*48 i n  t he  ( 2 )  i n t e r s t i t i a l  d i f fus ion  of oxygen. 

range t o  1 a t m .  This r e s u l t  suggests t h a t  oxygen i n t e r s t i t i a l  d i f f u s i o n  is 

the  r a t e  con t ro l l i ng  process,  s ince  t h e  concentrat ion of oxygen vacancies 

decreases  with increas ing  oxygen p a r t i a l  pressure while  t h e  concentrat ion of 

oxygen i n t e r s t i t i a l s  is an increasing funct ion of p . I f  oxygen d i f f u s i o n  v i a  

vacancies i n  the  anion s u b l a t t i c e  were t h e  predominant mechanism, c reep  r a t e s  

should have decreased with increasing p . Furthermore, from the  value of t h e  

exponent, 0.48, it would appear t h a t  t h e  oxygen d i f f u s e s  a s  a n e u t r a l  i n t e r -  

s t i t i a l  spec ie s .  

which oxygen may be  assumed t o  e n t e r  COO as  an i n t e r s t i t i a l  d e f e c t .  

t h e  nota t ion  of Kroger and Vink(33) t h e  r eac t ion  f o r  n e u t r a l  oxygen i n t e r s t i t i a l s  

may be w r i t t e n  as :  

Assuming t h a t  unasso- 

p02 
It has been shown t h a t  d 2  a 

O2 

O2 

This conclusion follows from an ana lys i s  of t h e  r eac t ions  by 

Following 

1/2 02(g) -8 0; , (1) 

X where Oi i s  a neu t r a l  oxygen i n t e r s t i t i a l .  

If oxygen i n t e r s t i t i a l s  a c t  as acceptors  of e l ec t rons ,  r e s u l t i n g  i n  the  formation 

of e l ec t ron  holes ,  t h e  reac t ions  f o r  t h e  in t roduct ion  of s ing ly  ionized and 
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doubly ionized i n t e r s t i t i a l s  may be w r i t t e n  as:  

1/2 02(g) -, Of + h , (2) 

and 

1 / 2  02(g) 4 0: + 2h , (3) 

where t h e  pr imes on the  oxygen i n t e r s t i t i a l s  represent  negat ive charge and h i s  

an e l ec t ron  hole .  

I n  COO t h e  predominant de fec t s  a r e  cobal t  vacancies(23).  A t  high oxygen 

+ 
pressures  t h e  n e u t r a l i t y  condi t ion is  [e 1 = [V;,] where [e+] and [Vi,] a r e  t he  

concentrat ions of e l ec t ron  holes and s ing ly  ionized coba l t  vacancies,  r e spec t ive ly .  

A t  low oxygen pressures  t h e  n e u t r a l i t y  condi t ion i s  {e ] = 2[VGo] where [VEo] i s  

t h e  concentrat ion of doubly ionized cobal t  vacancies .  

t he  d i f f e r e n t  concentrat ions of oxygen i n t e r s t i t i a l s  i s  a s  follows: 

+ 

The p r e s s u r e  dependence of  

1 / 2  c0;1 a Po 
2 

independent of n e u t r a l i t y  condi t ion,  

[ O i l  cc and [O;] = cons tan t  
.-I 
L 

1/6 
po2 

[O!] a pO1I3; and COY] a 
2 1 

( 4 )  

(5) 

f o r  [e+] = 2[vi0l,  

where [e;] ,  [Of] ,  and [O'!] a r e  concentrat ions of n e u t r a l ,  s ing ly  ionized,  and 

doubly ionized oxygen i n t e r s t i t i a l s  r e spec t ive ly .  

1 

Examination of t h e  above equations shows t h a t  a pressure dependence 

of  oxygen i n t e r s t i t i a l s  c l o s e  t o  p OS4' i s  poss ib le  only i f  neu t r a l  oxygen 

i n t e r s t i t i a l s  con t ro l  t h e  c reep .  
O2 
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While t h e  r e s u l t s  o f  t h i s  study are the  f i r s t  t o  i n d i c a t e  t h e  

ex is tence  o f  oxygen i n t e r s t i t i a l s  i n  COO, i nves t iga t ions  of  oxygen d i f fus ion  i n  

a number o f  o t h e r  oxide systems have pointed t o  s imilar  conclusions.  

example, oxygen d i f fus ion  has been found t o  increase  wi th  increas ing  oxygen 

For 

pressure  i n  NiO(34)  , C U ~ O ' ~ ~ ) ,  ZnO(36), and most r ecen t ly  MgO(37) . The poss i -  

b i l i t y  t h a t  oxygen d i f f u s e s  as an i n t e r s t i t i a l  defec t  i n  oxides i s  o f t e n  dismissed 

on t h e  bas i s  of s i z e  cons idera t ions .  This argument is  v a l i d  f o r  i n t e r s t i t i a l  

migrat ion of oxygen a s  0" which has an ion ic  rad ius  of 1.32 2. However n e u t r a l  

oxygen has a rad ius  of  0.60 w and may be expected t o  migrate  wi th  r e l a t i v e  ease  

through COO. 

It i s  a l s o  q u i t e  poss ib l e  t h a t  oxygen migrates v i a  complex point  

de fec t s  (38) . These assoc ia ted  de fec t s  might involve e i t h e r  oxygen i n t e r s t i t i a l s  

o r  vacancies .  Under t h e  assumption t h a t  t he  predominant point de fec t s  a r e  unasso- 

c i a t e d  s ing ly  ionized cobal t  vacancies a t  t h e  creep temperatures ( f o r  10 

< po, < 1 atm), t h e  most tenable  assoc ia ted  de fec t s  whose concent ra t ion  va r i e s  a s  

-3 a t m  

L 

are (O;Vl0)'' and (2V' V")x.  Here t h e  terms V co 0 co 0 and V a r e  cobal t  and 
p02 
oxygen l a t t i ce  vacancies and the  do t s  represent  p o s i t i v e  charge.  The assoc ia ted  

de fec t  (OfVA)" was f i r s t  suggested f o r  N i O  by H ~ c h ' ~ ~ ) .  However, t h e  simpler 

unassociated n e u t r a l  oxygen i n t e r s t i t i a l  i s  cons i s t en t  w i th  t h e  observed p 

dependence of t h e  c reep  ra te  and t h e r e  i s  no reason t o  discount t h i s  simpler 

de fec t  a t  p resent .  

O2 

The p robab i l i t y  t h a t  h i s  con t ro l l ed  by t h e  migrat ion of one of t h e  
2 

compound cons t i t uen t s  i s  cons i s t en t  with o the r  r e s u l t s  i n  ion ic  binary compounds 

where S-shaped creep  curves have been observed. This i s  i n  con t r a s t  t o  ma te r i a l s  

w i th  a diamond c r y s t a l  s t r u c t u r e  i n  which t h e  rate c o n t r o l l i n g  mechanism f o r  d: 

i s  t h e  g l i d e  of d i s loca t ions  through t h e  c r y s t a l  l a t t i c e .  Table 3 summarizes t h e  

a c t i v a t i o n  energies  f o r  2 d i f fus ion ,  and d i s loca t ion  movement f o r  materials i n  

2 

2, 
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2 1  

which 

c reep  

an S-shaped creep  curve has been observed. 

a c t i v a t i o n  energies  a r e  very c l o s e  t o  t h e  a c t i v a t i o n  energies  f o r  d i f fus ion  

I n  COO, NaC1,  and U02,  t h e  

of one of t h e  cons t i t uen t  spec ies .  

fus ion  is  not known and i t  i s  poss ib le  t h a t  Q 

However, i n  t h e  mater ia l s  having t h e  diamond s t r u c t u r e  (Gel  S i ,  and InSb),  Qc i s  

c l o s e r  t o  the  a c t i v a t i o n  energy fo r  d i s loca t ion  g l i d e  than the  a c t i v a t i o n  energy 

f o r  d i f fus ion ,  Qd. 

I n  FeO, the  ac t iva t ion , ene rgy  for  oxygen d i f -  

i n  FeO r e l a t e s  t o  oxygen d i f f u s i o n .  
C 

The value of Qvl t he  a c t i v a t i o n  energy fo r  d i s loca t ion  g l i d e ,  i s  not 

known f o r  COO. 

c r y s t a l s ,  wi th  less d i r e c t i o n a l  bonding, it would be expected t h a t  Q would be 

even lower r e l a t i v e  t o  Q Therefore t h e  observat ion t h a t  Q M Q f o r  oxygen i n  

COO s t rongly suggests t h a t  d 2  i s  con t ro l l ed  by d i f fus ion  r a t h e r  than by d i s loca t ion  

g l id ing .  

However f o r  t he  covalent mater ia l s ,  Qv w 1 / 2  Qd. I n  i on ic  

V 

d ’  C d 

The model f o r  creep i n  the  covalent ly  bonded mater ia l s  i s  based on d i s -  

l oca t ion  dynarnics(l2’ 15’52). This model p red ic t s  S-shaped creep curves i n  c r y s t a l s  

having a low i n i t i a l  mobile d i s loca t ion  dens i ty .  Simply, i n  region 1 of Figure 3 

t h e  number of mobile d i s loca t ions  i s  increasing continuously wi th  increasing s t r a i n ,  

causing t h e  c reep  r a t e  t o  acce le ra t e .  However, i n  region 2 t he  d i s loca t ion  dens i ty  

becomes s u f f i c i e n t l y  l a rge  t h a t  d i s loca t ion  in t e rac t ions  cause t h e  d i s loca t ion  velo-  

c i t y  t o  decrease r e s u l t i n g  i n  a lower c reep  r a t e  with increas ing  creep s t r a i n .  

This model can a l s o  be appl ied q u a l i t a t i v e l y  t o  creep i n  the  COO s i n g l e  

c r y s t a l s .  

ning by a high dens i ty  of  jogs o r  because of a low t o t a l  d i s loca t ion  dens i ty  from 

annealing 66 hours i n  s i t u  before  t e s t i n g .  The d i s loca t ion  dynamics model then 

explains  the  shape of t h e  c reep  curve.  

model of W e b ~ t e r ‘ ~ ~ ) ,  t he  temperature dependence of  C 

with  t h e  temperature dependence f o r  d i s loca t ion  g l i d e .  However i n  COO t h i s  must 

be assoc ia ted  with an oxygen d i f fus ion  r e l a t e d  process .  

I n i t i a l l y  t h e  mobile d i s loca t ion  dens i ty  may be q u i t e  low due t o  pin- 

I n  Haasen’s model (12’15) and a l s o  t h e  

i s  assoc ia ted  pr imar i ly  2 
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Two poss ib l e  c reep  mechanisms cons i s t en t  wi th  a d i s l o c a t i o n  dynamics 

approach a r e  t h e  g l i d e  of jogged screws (54s55) and t h e  g l i d e  of  charged d i s l o -  

cat ions(56y57)  . The g l i d e  o f  charged d i s l o c a t i o n s  , dragging along an atmosphere 

of  charged de fec t s  t o  maintain e lectr ical  n e u t r a l i t y ,  i s  not compatible with t h e  

d i f fus ion  of  neu t r a l  oxygen i n t e r s t i t i a l s  s ince  i t  would be t h e  motion of  t h e  

charged point  de fec t s  i n  t h e  charge cloud surrounding t h e  moving d i s l o c a t i o n  

which would con t ro l  t h e  d i s l o c a t i o n  g l i d e .  

Since i n  Co0,cobalt vacancies a r e  t h e  predominant de fec t s ,  a g l i d i n g  

d i s loca t ion  would tend t o  sweep up mostly coba l t  vacancies .  

t i o n s  would have predominantly oxygen ions a t  t h e i r  jogs g iv ing  t h e  d i s l o c a t i o n s  

a n e t  nega t ive  charge.  

r e s u l t .  

de fec t s ,  and even the  assoc ia ted  defec t  (O!V'  )" is not  pe r t inen t  t o  t h i s  model. 

The g l id ing  d i s loca -  

Sweeping of  oxygen i n t e r s t i t i a l s  would cause t h e  same 

The n e u t r a l i z i n g  charge cloud must then be composed o f  p o s i t i v e l y  charged 

1 co  

The motion of  jogged screws requ i r e s  t h e  d i f f u s i o n  of both a coba l t  and 

an oxygen ion t o  complete a u n i t  forward movement of t h e  jog .  I n  t h i s  ca se  d i f -  

fus ion  of  t h e  slower moving ion,  oxygen, would be expected t o  be r a t e  con t ro l l i ng .  

Also, t h i s  would be expected whether oxygen d i f fused  as a simple or a complex 

defec t  o r  was e i t h e r  charged o r  uncharged. Therefore, i t  i s  suggested t h a t  a 

f e a s i b l e  rate c o n t r o l l i n g  process f o r  t h e  i n f l e c t i o n  c reep  r a t e ,  6 

oxygen d i f f u s i o n  l imi ted  g l i d e  of jogged screw d i s l o c a t i o n s .  The reason f o r  t h e  

l a rge  stress dependence i s  not c lear  a t  p resent .  It may be caused by a stress 

dependence of  t h e  mobile d i s loca t ion  dens i ty  o r  poss ib ly  even the  jog  dens i ty .  

2 '  This  discussion,  o f  course,  i s  pe r t inen t  only t o  t h e  i n f l e c t i o n  c reep  rate,  6 

I f  s t eady- s t a t e  creep had been reached i n  the  present  i nves t iga t ion ,  it i s  very 

is  t h e  2 '  

poss ib le  t h a t  here  another  c o n t r o l l i n g  mechanism, e.g. ,  climb, could be 

opera t ive .  
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Subs t ruc ture  

The sub-boundaries decorated by t h e  Co 0 p a r t i c l e s  (Figures 12 and 13) 3 4  

may be e i t h e r  t i l t  boundaries c rea t ed  by climb of  edge d i s l o c a t i o n s  out  of t h e  

( O i l )  and (011) g l i d e  planes,  o r  g l i d e  d i s l o c a t i o n s  ly ing  i n  t h e  g l i d e  p lanes .  

However, i f  t h e  g l i d e  planes were so well defined by a high dens i ty  o f  g l i d e  

d i s l o c a t i o n s  t h a t  they were p r e f e r e n t i a l l y  decorated by t h e  Co 0 

it would be expected t h a t  l a rge  s l i p  o f f s e t s  would be v i s i b l e  on t h e  su r face  wi th  

a spacing between them comparable t o  t h e  spacing between t h e  decorated boundaries. 

p r e c i p i t a t e ,  3 4  

This has been observed i n  high temperature creep of molybdenum s i n g l e  c r y s t a l s .  (58) 

However no such s l i p  bands were observed by o p t i c a l  microscopy (except i n  t h e  one 

a t y p i c a l  ca se  shown i n  Figure 10). 

sub-boundaries formed dur ing  creep,  cons i s t en t  w i th  those  observed by transmission 

e l e c t r o n  microscopy i n  Figure 15. They were probably formed a f t e r  t h e  i n f l e c t i o n  

of t h e  c reep  curve, a t  l a r g e r  creep s t r a i n s  where s teady  s t a t e  c reep  was 

approached. The p o s s i b i l i t y  of (100) t w i s t  boundaries, too ,  i s  e n t i r e l y  con- 

s i s t e n t  w i th  t h e  formation of r egu la r  sub-boundaries where only two s l i p  systems 

are ope ra t ive  

Hence t h e  decorated boundaries a re  probably 

(58) 

The absence of sub-boundaries i n  t h e  specimen which deformed by s l i p  

on predominantly one s l i p  system (Figures 10 and 14), may i n d i c a t e  t h a t  without 

t h e  presence of a second set of  d i s l o c a t i o n s  having a d i f f e r e n t  Burgers vec tor  

t h e r e  a r e  not  s u f f i c i e n t l y  s t rong  b a r r i e r s  t o  i n i t i a t e  t h e  tilt w a l l  formation 

o r  t o  p in  them, once they  have formed . (58) 
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Relevance of Creep R e s u l t s  t o  Oxidation Behavior 

The work on t h i s  program of Kofstad, Hed, and Billman has shown t h a t  

COO sca l e s  form during oxidat ion of Go and Co-Cr a l l o y s .  The condi t ions they 

s tudied ,  where COO layers  formed, a r e :  

= 0.1-760 t o r r  

= 0.1-760 t o r r  
po2 

pure Co : 900 -13OO0C, 

Co-Cr, where C r  < 10%: 

Co -25% C r  : 900 -l3OO0C, M 100-760 t o r r .  
p02 

900-13OO0C, 

It i s  of i n t e r e s t  t o  examine how COO sca l e s  may creep i n  s i t u  ( i . e . ,  

during oxidat ion)  and how t h e  p l a s t i c i t y  (or  lack of p l a s t i c i t y )  can inf luence  

scale morphology,adherence, and the  genera l  oxidat ion behavior.  For purposes of 

d i scuss ion  only t h e  more simple case  of  oxidized pure Co w i l l  be considered. An 

example of such a s c a l e  i s  shown i n  Figure 16a. Here the  pure Go specimen was 

oxidized fo r  6 hours a t  1100 C i n  an atmosphere of pure oxygen. The COO scale 

(0.24 mm th ick)  is seen t o  have numerous pores,  which are more concentrated near 

t h e  metal/oxide in t e r f ace .  Although t h e  scale appears t o  have separated from 

t h e  metal , it  is  probable t h a t  i t  was adherent a t  t h e  oxidizing temperature.  

0 

* 

I n  t h i s  system t h e  metal/oxide i n t e r f a c e  remains near ly  f ixed  and t h e  

oxide grows by ca t ion  d i f f u s i o n  through the  COO and subsequent r eac t ion  with 

oxygen a t  the  oxide su r face .  Since t h e  molar volume of the COO formed is  g r e a t e r  

than the  molar volume of t he  C o  from which t h e  oxide formed ($J, t h e  P i l l i n g -  

Bedworth r a t i o ,  is 1.8) compressive s t r e s s e s  probably a r e  present  i n  the  s c a l e  a t  

temperature. 

degree of adherence of t h e  s c a l e  t o  t h e  metal (nature  of t h e  oxide/metal  i n t e r -  

face) ,  the  ava i l ab le  p l a s t i c i t y  of t he  s c a l e  (by which stress may be r e l i eved  by 

The magnitude and d i s t r i b u t i o n  of t he  stresses depend on: t h e  

.. 
It i s  poss ib le  t h a t  t h e  black region a t  the  Co/CoO i n t e r f a c e  i s  not a sepa- 
r a t ion ,  but r a t h e r  a pol ishing e f f e c t .  
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creep) and the  number and d i s t r i b u t i o n  of pores (which a r e  p o t e n t i a l  stress 

concent ra tors ) .  

It was found t h a t  t h e  i n f l e c t i o n  c reep  r a t e ,  i2, of COO s i n g l e  c ry -  

s t a l s  was r e l a t e d  t o  composition, x i n  Co 

t iona 1 i t y  

0,  and stress, U, by the  propor- 1 -x 

6 a x  1.75 d o 8 ,  a t  constant  temperature . 2 (7) 

Two hypothe t ica l  and highly s impl i f ied  s i t u a t i o n s  (Figure 16b and c) represent  

t he  inf luence of  composition and stress i n  an oxide s c a l e  on the  predicted 

s c a l e  c reep  r a t e .  The condi t ions considered a r e :  

s i n c e  these  correspond t o  the  condi t ions under which t h e  s c a l e  i n  Figure 16a 

was formed and a l so  t o  condi t ions under which COO s i n g l e  c r y s t a l s  were creep  

0 T = 1100 C and po = 1 a t m ,  
2 

t e s t e d .  The a c t u a l  stress l eve l s  chosen may not be r ep resen ta t ive  of stresses 

i n  t h e  sca l e s  a t  temperature.  However they represent  stresses where creep 

da ta  a r e  ava i l ab le ,  thus s implifying t h e  c a l c u l a t i o n  of r e l a t i v e  creep r a t e s .  

Thus the  diagrams i n  Figure 16b and c a r e  probably reasonably c o r r e c t  i n  rela- 

t i v e  terms, but not necessa r i ly  accurate  on an absolu te  b a s i s .  

Figure 16b and c t h e  following assumptions were made: 

I n  p l o t t i n g  

FiPure 16b 

The stress was constant  (850 ps i )  across  t h e  whole s c a l e  

th ickness .  No re l axa t ion  occurred by c reep  of t h e  Co 

s u b s t r a t e .  

The value of  x a t  t h e  sur face  w a s  which i s  

mately t h e  equi l ibr ium value a t  1100 C and po = 0 

2 

approxi - 
1 atm . (23) 

The value of x a t  t h e  metal/oxide i n t e r f a c e  was a r b i t r a r i l y  

taken t o  be A decrease i n  x from t h e  s c a l e  sur face  

t o  t h e  metal i s  reasonable.  Figure 16a (and o the r  micro- 

graphs not shown) shows white p a r t i c l e s  of Co304 which 
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p rec ip i t a t ed  a f t e r  cool ing below - 900°C. 

pronounced near  t he  oxide sur face  and a r e  not v i s i b l e  a t  

a l l  near t h e  metal/oxide i n t e r f a c e .  

Co 0 p a r t i c l e  dens i ty  ind ica t e s  t h a t  during oxidat ion x 

was higher a t  the  oxide su r face .  

These a r e  mre 

This gradat ion i n  

3 4  

(d) A s t r a i g h t  l i n e  was drawn f o r  t h e  composition-distance 

p r o f i l e ,  which assumes t h a t  log x 0: C t  where t = s c a l e  

thickness  

(e) The poss ib l e  inf luence  of poros i ty  was ignored. 

Fipure 16c 

(a) The stress was highest  a t  t he  oxide/metal i n t e r f a c e  

(850 p s i )  and decreased l i n e a r l y  t o  ha l f  t h i s  value 

(425 p s i )  a t  t h e  oxide sur face .  No r e l axa t ion  occurred 

by creep of t he  Co s u b s t r a t e .  

The gradien t  i n  x was the  same a s  t h a t  i n  Figure 16b. (b) 

(c) The poss ib le  inf luence of poros i ty  was ignored. 

If t h e  above s i t u a t i o n s  were t o  e x i s t  a t  a po in t  i n  t i m e  during oxida- 

t i o n ,  then a t  t h a t  time i t  i s  seen t h a t :  (1) i n  Figure 16b, t h e  COO near the  

sur face  would c r e e p -  2 x 10 t i m e s  a s  f a s t  a s  t h e  oxide adjacent  t o  t h e  Co sub- 

s t r a t e ,  and (2) i n  Figure 16c, t he  COO near  t h e  sur face  would c reep  - 20 t i m e s  

a s  f a s t  a s  t he  oxide adjacent  t o  t h e  Co s u b s t r a t e .  These observat ions of course 

must be regarded only a s  hypothet ical ,  s ince:  

3 

(a) The t r u e  stress d i s t r i b u t i o n  a t  any point  i n  t i m e  i s  not  

r e a l l y  known. However, t he  compressive stresses i n  t h e  COO 

s c a l e  would be expected t o  be l a r g e s t  immediately adjacent  t o  

t h e  oxide/metal  i n t e r f a c e  where t h e  s c a l e  adheres t o  t h e  metal 

s u b s t r a t e .  During oxidat ion of Co,  the  oxide grows a t  t he  



oxide/gas su r face  where the  volume d i f f e rence  between the  

metal and oxide can be accommodated la rge ly  by growth 

normal t o  the  oxide sca l e .  Therefore i t  is expected t h a t  

Figure 16c is more r ep resen ta t ive  of  t he  a c t u a l  s i t u a t i o n ,  

s ince  t h e  stress i s  probably a maximum a t  o r  near t he  

metal/oxide i n t e r f a c e  and decreases (possibly even t o  zero) 

a t  the  oxide su r face .  

(b) The stress d i s t r i b u t i o n  probably changes wi th  t i m e ,  

i . e . ,  a s  creep occurs s t r e s s e s  a r e  re laxed and t h e  formation 

and growth of  voids inf luences t h e  stress 

d i s t r i b u t i o n .  

(c) The t r u e  composition-distance (x vs .  thickness)  p r o f i l e  

i s  not known. 

(d) The ca l cu la t ions  were made using Equation (7) ,  which 

represents  creep r e s u l t s  f o r  s i n g l e  c r y s t a l s .  Po lyc rys t a l l i ne  

c reep  da ta  (which a r e  present ly  being obtained) would probably 

provide more accura te  resul ts ,  s ince  the  COO s c a l e s  a r e  poly- 

c r y s t a l l i n e .  

I n  l i g h t  of the  above discussion i t  i s  usefu l  t o  consider  t h e  gradat ion 

i n  porosi ty  shown i n  Figure 16a. It can be concluded t h a t  t he  oxide i s  inher-  

en t ly  more p l a s t i c  near  t h e  sur face  than a t  t h e  Co/CoO i n t e r f a c e ,  a s  a r e s u l t  of 

t he  composition v a r i a t i o n .  Also t h e  stresses a r e  more relaxed a t  t h e  su r face  

s ince  creep is  e a s i e r .  These f a c t o r s  would favor f r a c t u r e  of  t he  s c a l e  a t  o r  

near  t he  metalloxide i n t e r f a c e .  This is cons is ten t  wi th  t h e  observat ion of a 

higher void dens i ty  near t h e  Co/CoO i n t e r f a c e .  Microcracks could have formed 

here  i n i t i a l l y ,  and subsequent vacancy condensation could account fo r  t h e i r  

rounded appearance i n  Figure 16a. 
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It i s  obvious t h a t  a r igorous and comprehensive desc r ip t ion  of t h e  

i n  s i t u  creep behavior of COO sca l e s  during oxidat ion of C o  w i l l  be very com- 

p l i ca t ed .  Before t h i s  can be r ea l i zed  it w i l l  be necessa.ry t o  have d e t a i l s  o f :  

(1) the  magnitude and d i s t r i b u t i o n  of stress i n  sca l e s ,  and how these  vary with 

t i m e ,  s c a l e  thickness ,  and temperature, (2) an accura te  composition-distance 

p r o f i l e  (x vs.  thickness) ,  and how t h i s  va r i e s  wi th  t i m e  and temperature, (3) 

how the  s c a l e  adherence i s  influenced by temperature, and 

how creep i n  t h e  C o  s u b s t r a t e  can a s s i s t  i n  re lax ing  s t r e s s e s  i n  the  oxide 

sca l e ,  e .g . ,  slow t e n s i l e  creep r a t e s  i n  t h e  Co s u b s t r a t e  would a i d  i n  r e l i e v i n g  

compressive stresses in  the  oxide.  

( 4 )  a knowledge of 

The above discussion,  of  course,  pe r t a ins  only t o  oxide s c a l e  c reep  

during isothermal oxida t ion .  

cycled. During the  cyc l ing ,  stress magnitudes and d i s t r i b u t i o n s  change a s  a 

r e s u l t  of d i f fe rences  i n  thermal expansion between the  metal and oxide.  Fur ther -  

more, metals a r e  o f t en  subjected t o  dynamic oxidat ion s i t u a t i o n s  i n  a f a s t  moving 

gas stream. Here f r i c t i o n a l  forces  and impact by fore ign  p a r t i c l e s  can a l t e r  t he  

stress s t a t e  i n  t h e  s c a l e .  These complications u l t ima te ly  must be taken i n t o  

account before the re  can be a comprehensive p i c t u r e  of how oxide c reep  and p l a s -  

t i c i t y  can inf luence the  oxidat ion and sca l ing  of  metals i n  s p e c i f i c  appl ied 

s i t u a t i o n s .  

I n  many appl ica t ions  oxidized metals a r e  thermally 

CONCLUSIONS 

1. Compression creep curves of COO s i n g l e  c r y s t a l s  with <loo> compression axes 

have a sigmoidal shape. 

2 .  The a c t i v a t i o n  energy f o r  the  c reep  r a t e  a t  t h e  i n f l e c t i o n  of t he  creep 

curve, d was 87.1 5 2.4 kcal/mol a t  po = 0 . 1  atm and 99.8 2 7 .7  kcal/mol 
2 2’ 
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a t  po = 1.0 atm. 

energy f o r  s e l f  d i f f u s i o n  of oxygen i n  COO, 95 kcal/mol a t  p 

These values  a r e  i n  good agreement wi th  t h e  a c t i v a t i o n  

= 0 .2  atm. 
2 

0, 
L 6.8 % 0.3 3 .  The stress dependence of  d was d a (J 

4 .  The oxygen pressure  dependence of 4 was d 

5 .  The composition dependence of d i n  terms o f  Co 0 was d a x 

2 2 
0.48 % 0.01 

2 a Po2 2 
1.75 

2 1 'X 2 

6 .  

7 .  

The s l i p  systems were of  t h e  type < O l D f l l O ] .  

Sub-boundaries formed during c reep  were observed by decorat ion wi th  Co 0 

p r e c i p i t a t e s .  These boundaries were p a r a l l e l  t o  (011) l o l l ]  and may be 

e i t h e r  t i l t  o r  g l i d e  boundaries.  

3 4  

8 .  It i s  probable t h a t  oxygen d i f fus ion  con t ro l s  t h e  creep of COO s i n g l e  

c r y s t a l s  over t h e  range of condi t ions inves t iga t ed  i n  t h i s  s tudy .  The 

predominant creep mechanism may be the  g l i d e  of jogged screw d i s loca t ions ,  

t h e i r  motion being con t ro l l ed  by d i f fus ion  of n e u t r a l  oxygen i n t e r s t i t i a l s .  

9. A q u a n t i t a t i v e  desc r ip t ion  of COO s c a l e  creep during oxida t ion  of pure Co 

i s  very d i f f i c u l t .  It can be sa id ,  however, t h a t  t h e  s c a l e  a t  t he  su r face  

w i l l  be more p l a s t i c  than t h e  COO near  the  metal/oxide i n t e r f a c e .  
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Sectioned By Four Ultrasonically Trepanned 
Diamond Cut - O f f  Cylindrical Specimens From 

Sections B, C, and D 

Final Cylindrical 
Compression Creep 
Specimen 

Figure 1 .  Procedure by Which the Creep Specimens were Machined 
from As-Received Single  Crystal Boules 
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B Gos inlet 
C Bellows 
D Alumina muffle tube 
E Furnace 
F Specimen 
G Gas outlet 
H Strain-measuring push rods 
I Linear variable differential transducer 
P Load 

Alignment bearings on upper loading ram 

Figure 2. Compression Creep Furnace for Creep Testing 
in Controlled Atmospheres 
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Figure 3. Schematic of a Typical Compression Creep Curve of 
COO Single Crystals Having a <loo> Compression Axis. 
Stages 1 and 2 were actually observed in creep tests. 
See text for discussion of Stage 3. 



8 5 0  psi 

Figure 4 .  Temperature Dependence o f  6 2 a t  
Two Oxygen Pressures 
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Figure 5 .  The Stress Dependence o f  d2 a t  
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Figure 6 .  The Dependence of 6 on the 
Part ia l  Pressure of20xygen 
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Figure  7 .  Composition Dependence of d a t  850 p s i  and llOO°C 2 



Figure 8. P r e c i p i t a t e  D i s t r ibu t ion  i n  a COO Sing le  Crys t a l  
Annealed 66 Hours i n  One Atmosphere of  Oxygen, 
Followed by a Water Quench; 850 X 



a .  Near t h e  Center o f  t h e  Specimen; 1000 X 

b .  

F igure  9 .  

Near t h e  Edge of  t h e  Specimen; 1000 X 

COO S i n g l e  C r y s t a l  Annealed 66 Hours a t  l l O O ° C  
i n  an Argon-Oxygen Atmosphere having 

= 10-4 atm, Followed by a Water Quench 
po2 



a .  b .  

Figure 10.  S l i p  Bands on an Atypical Specimen t h a t  
Deformed Predominantly by S l i p  on One 
S l i p  System; 9 X 



a .  As-Received Micros t ruc ture  of COO S ing le  Crys t a l s .  
The white p r e c i p i t a t e s  a r e  probably Co 0 
polished and etched; 850 X 3 4; 

b .  Co304 P a r t i c l e  Observed by Transmission Elec t ron  Microscopy 

Figure 11. P r e c i p i t a t e  P a r t i c l e s  i n  COO and t h e  Dis loca t ion  
Debris Associated wi th  them 



c - .rl 
m a  
m k  
a )u  
F t m  
U m a  

aJ 
SaJ 
M k  
4 v 

c o c o  
U u o  cou 

x d  



F 
-c 

& 

0 
c 



I Stress 
Axis (1 0 0) 

View 
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p a t t e r n  of subs t ruc tu re .  
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